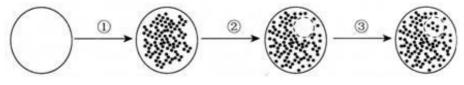
北京师范大学广州实验学校 2020-2021 学年第一学期 12 月月考 高一生物问卷

命题人: 张清 审题人: 王杰、李彤

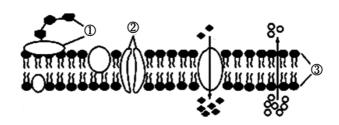
本试卷共 10 页, 33 题, 满分 100 分。考试用时 60 分钟

- 一、选择题(本大题共30小题,每小题2分,满分60分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填在答题卡上)
- 1. 下列是关于几类生物的特点的叙述,正确的是()
- A. 色球蓝细菌与绿藻的共同点是都能进行光合作用, 但它们的细胞中都不含叶绿体
- B. 硝化细菌与变形虫结构上的根本区别是前者有细胞壁,后者无细胞壁
- C. 大肠杆菌和蓝细菌在结构上有统一性,具体体现在它们都有细胞壁、细胞膜、核糖体及相同类型的遗传物质 DNA 等
- D. 甲型流感(H1N1)病毒结构简单,仅含有核糖体
- 2. 某无土栽培的培养液中含有 Mg^{2+} 、 K^+ 、 Ca^{2+} 、 Fe^{3+} ,其浓度都是 $0.1 \text{ mol} \cdot L^{-1}$,培养一段时间后,培养液中剩余最多的是(
- A. Fe^{3+} B. Mg^{2+} C. K^{+} D. Ca^{2+}
- 3. 科学家培育出一种类似于细菌的"人造细胞"。这种简单的"细胞"并不是真正的生命体,不能分裂和分化,但能连续数日生成蛋白质。下列关于蛋白质的叙述中,正确的是()
- A. 盐析可以破坏蛋白质中肽链的空间结构,这种作用是可逆的
- B. 每种蛋白质都由 21 种氨基酸组成
- C. 每种蛋白质都含有 C、H、O、N、S、P 等元素
- D. 氨基酸种类、数量和排列顺序都相同的蛋白质不一定是同种蛋白质
- 4. 下列关于组成细胞化合物的叙述,不正确的是()
- A. 结合水是细胞结构的重要组成成分,大约占细胞内全部水分的4.5%
- B. DNA 分子碱基的特定排列顺序,构成了 DNA 分子的特异性
- C. RNA 与 DNA 的分子结构相似,由四种核苷酸组成,可以储存遗传信息
- D. 单糖和二糖可直接被细胞吸收, 淀粉必须经过消化分解后才能被细胞吸收

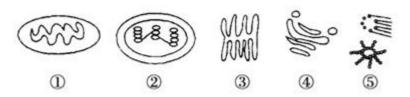

- 5. 下列有关分泌蛋白的叙述,错误的是()
- A. 分泌蛋白在细胞内的合成需要核糖体的参与
- B. 线粒体能为分泌蛋白的合成和运输提供能量
- C. 分泌蛋白先经过高尔基体再经过内质网分泌到细胞外
- D. 分泌蛋白从细胞内排出时,囊泡的膜可与细胞膜融合
- 6. 动物细胞和高等植物细胞共同具有的结构是()
- ①细胞壁 ②细胞膜 ③叶绿体 ④核糖体 ⑤液泡 ⑥内质网

- ⑦中心体 ⑧高尔基体 ⑨线粒体 ⑩溶酶体

- A. (2)(4)(6)(7)(8)(9)(10 B. (3)(4)(6)(7)(9)(10 C. (1)(3)(4)(5)(6)(8) D. (2)(4)(6)(8)(9)(10
- 7. 下列关于细胞核各结构和功能的叙述,正确的是()
- A. 核膜属于生物膜系统
- B. 染色体是遗传物质 DNA 和 RNA 的载体
- C. 核仁与蛋白质的合成以及核糖体的形成有关
- D. 核孔有利于 DNA 和 RNA 从细胞核进入细胞质
- 8. 构成细胞的有机化合物及其组成元素如表请据表判断,下列叙述正确的是(


有机化合物	组成元素
甲	С. н. о
乙	С. Н. О. N. Р
丙	C、H、O、N,有的还有 S
丁	C、H、O,有的含有N和P

- A. 细胞核中含有甲类化合物
- B. 细胞壁中含有丙类化合物
- C. 细胞质中不含乙类化合物
- D. 细胞膜中不含丙类化合物
- 9. 对某动物细胞进行荧光标记实验,如下示意图所示,其基本过程:①用某种荧光 材料标记该动物细胞,细胞表面出现荧光斑点。②用激光束照射该细胞表面的某一区 域,该区域荧光淬灭(消失)。③停止激光束照射一段时间后,该区域的荧光逐渐恢 复,即有出现了斑点。



上述实验不能说明的是()

- A. 细胞膜具有流动性
- B. 荧光染料能与细胞膜组成成分结合
- C. 根据荧光恢复的速率可推算出物质跨膜运输的速率
- D. 根据荧光恢复的速率可推算出膜中蛋白质或脂质的流动速率
- 10. 生物膜上常有某些物质或结构与其功能相适应,下列相关叙述错误的是()
- A. 细胞膜上附着 ATP 水解酶, 有利于主动吸收某些营养物质
- B. 核膜上有许多核孔,有利于核质之间的物质交换与信息交流
- C. 内质网和高尔基体膜上附着核糖体, 有利于对多肽链的加工
- D. 线粒体内膜上附着与有氧呼吸有关的酶,有利于[H]的氧化
- 11. 如图表示细胞膜的部分亚显微结构模型,下列有关叙述正确的是()

- A. 罗伯特森在电镜下看到细胞膜清晰的"暗-亮-暗"三层结构中,提出生物膜都由脂质一蛋白质一脂质三层结构构成
- B. 图中②③结构构成细胞膜的基本支架
- C. 糖类在细胞膜上只以①的形式存在
- D. 细胞膜的功能特点与结构②和③均有关
- 12. 电子显微镜下观察小麦幼茎皮层细胞,可观察到的结构如图中的()

- A. (1)(2)(3)(4)(5)
- B. (1)(2)(3)(4)
- (1)(3)(4)(5)
- D. (1)(2)(3)(5)
- 13. 甲(○)、乙(●)两种物质在细胞膜两侧的分布情况如下图(颗粒的多少表示浓度的高低),在进行跨膜运输时,下列说法正确的是()

A. 乙进入细胞一定有载体蛋白的参与 B. B. 乙运出细胞一定有载体蛋白的参与 胞 膜 C. 甲进入细胞一定需要能量 D. D. 甲运出细胞一定不需要能量 14. 植物细胞发生质壁分离的原因是(①外界溶液浓度大于细胞液浓度 ②细胞液浓度大于外界溶液浓度 ③细胞壁的伸缩性大于原生质层的伸缩性 ④原生质层的伸缩性大于细胞壁的伸缩性 A. (1)(4)B. 24 C. 23 D. 34 15. 下列属于主动运输的是() A. 动物肺泡细胞释放 CO。 B. 血液中的葡萄糖进入红细胞 C. 苯分子进入人的皮肤细胞 D. 肾小管上皮细胞吸收原尿中的 K⁺ 16. 如图所示, U 形管底部中央放置一半透膜(不允许溶质分子透过)。A 液和 B 液原 先体积相同,由于浓度不同,后来产生一个高度差 ΔH 。请问 ΔH 的大小主要取决于 A. A 液和 B 液中溶质分子大小 B. B. A 液和 B 液所在管的粗细 C. A 液和 B 液中溶剂是否相同 D. D. A 液和 B 液的浓度差大小 17. 在探究不同的温度对酶活性影响的实验时,温度和 pH 分别属于() B. 因变量和无关变量 A. 自变量和因变量 C. 自变量和无关变量 D. 自变量和对照变量 18. 若人体肌肉细胞中的线粒体结构破坏了,该细胞不能发生的过程是() A. 生成乳酸 B. 生成丙酮酸 C. 生成 ATP D. 生成 CO。 19. 下列关于酶的叙述, 正确的一项是() A. 酶提供反应开始时所必需的能量 B. 酶是由活细胞产生的,只在生物体内发挥作用 C. 酶的化学本质并非都是蛋白质

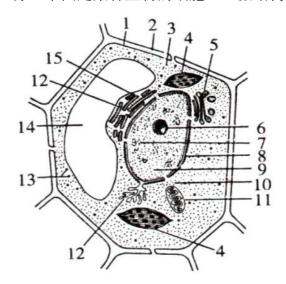
20. 酵母菌在有氧的条件下进行有氧呼吸,在无氧的情况下进行无氧呼吸。如果它在

D. 一个酶分子只起一次作用, 然后就被破坏了

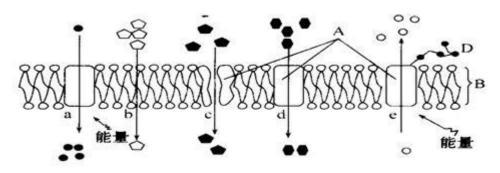
这两种呼吸过程中产生了等量的 CO。, 那么它分别在有氧和无氧情况下所消耗的葡萄 糖之比为(

- A. 1: 2 B. 1: 3 C. 3: 1 D. 2: 1

- 21. 下列各项应用中,主要利用细胞呼吸原理的是()
- ①贮存种子 ②果蔬保鲜 ③中耕松土 ④水稻的翻晒田 ⑤合理密植
- ⑥糖渍、盐渍食品 ⑦用透气的消毒纱布包扎伤口 ⑧间作、套种


- A. (2)(3)(4)(5)(6) B. (1)(2)(3)(4)(7) C. (2)(3)(4)(7)(8) D. (1)(2)(3)(4)(5)(6)(7)(8)
- 22. 下表是人体细胞进行有氧呼吸与无氧呼吸的区别, 表中描述错误的一项是(

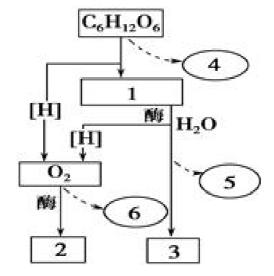
		有氧呼吸	无氧呼吸
A	呼吸场所	主要在线粒体内	细胞质基质
В	是否需氧	需氧参加	不需氧参加
С	分解产物	二氧化碳、水	二氧化碳、乳酸
D	释放能量	较多	较少


- A. A
- B. B
- C. C
- D. D
- 23. 下列物质的鉴定与所用试剂、实验手段、实验现象搭配,正确的是()
- A. 脂肪-苏丹Ⅲ染液-显微镜观察-染成红色的脂肪颗粒
- B. 葡萄糖— 斐林试剂— 直接观察— 砖红色沉淀
- C. 蛋白质—双缩脲试剂—直接观察—紫色反应
- D. 酒精-溴麝香草酚蓝水溶液-观察-灰绿色反应
- 24. 20 世纪 80 年代科学家发现了一种 RNaseP 酶, 是由 20%的蛋白质和 80%的 RNA 组 成的,如果将这种酶中的蛋白质除去,并提高剩余物质的浓度,他们发现留下来的 RNA 仍然具有与这种酶相同的催化活性,这一结果表明()
- A. RNA 具有生物催化作用 B. 酶是由 RNA 和蛋白质组成的
- C. 酶的化学本质都是蛋白质 D. 酶的化学本质都是 RNA
- 25. 巴斯德发现,利用酵母菌酿酒时,如果发酵容器中存在 0,,会导致酒精产生停止, 这就是所谓的巴斯德效应。直接决定"巴斯德效应"发生与否的反应及其场所是()
- A. 酒精+0。 \rightarrow 丙酮酸,细胞质基质 B. 丙酮酸+0。 \rightarrow CO。,线粒体基质

C. [H] +O ₂ →H ₂ O, 线粒体内膜 D. H ₂ O→O ₂ + [H], 类囊体薄膜		
26. 探索温度对酶活性影响的实验,需进行如下步骤()		
①取3支试管,编号并注入2mL淀粉溶液;		
②观察实验现象;		
③向各试管滴 1 滴碘液;		
④向各试管注入 1mL 唾液并摇匀,并在各自的温度下静置 5min;		
⑤将3支试管分别放在37℃的温水、沸水和冰块中维持温度5min		
最合理的实验顺序应为		
A. $(1) \to (2) \to (3) \to (4) \to (5)$ B. $(1) \to (3) \to (2) \to (4) \to (5)$		
C. $(1) \rightarrow (4) \rightarrow (5) \rightarrow (3) \rightarrow (2)$ D. $(1) \rightarrow (5) \rightarrow (4) \rightarrow (3) \rightarrow (2)$		
27. 下列有关探究酵母菌细胞呼吸方式实验的叙述,正确的是()		
A. 隔绝 0_2 的一组产生的 CO_2 量远大于通入 0_2 的一组		
B. 葡萄糖培养液煮沸的目的是杀灭微生物并去除培养液中的 0 ₂		
C. 可以用溴麝香草酣蓝水溶液检测无氧呼吸的产物——酒精		
D. 可以通过是否产生 CO ₂ 来判断酵母菌细胞呼吸的方式		
28. 三角瓶内有 pH 值为 2.0 的缓冲液,将胃蛋白酶、唾液淀粉酶、乳清蛋白、淀粉		
先后加入该瓶内,在37℃水浴锅内保温一段时间后,检测瓶内剩余物质最可能的是		
()		
A. 淀粉、胃蛋白酶、多肽、水 B. 麦芽糖、胃蛋白酶、多肽、水		
C. 唾液淀粉酶、胃蛋白酶、多肽、水 D. 唾液淀粉酶、淀粉、胃蛋白酶、水		
29. 下列有关酶与 ATP 的叙述正确的是 ()		
A. 酶的合成往往需要 ATP, 但 ATP 的合成一般不需要酶		
B. 酶可以催化反应的进行,ATP可以直接为细胞代谢提供能量		
C. 酶在高温、低温、过酸、过碱条件下,空间结构都会被破坏		
D. 只有真核细胞才有 ATP 与 ADP 相互转化的能量供应机制		
30. 下列关于酶的叙述, 正确的是 ()		
A. 发烧时,食欲减退是因为唾液淀粉酶失去了活性		
B. 多酶片中的胰蛋白酶可在小肠中发挥作用		

- C. 用果胶酶澄清果汁时, 温度越低澄清速度越快
- D. 洗衣时, 加少许白醋能增强加酶洗衣粉中酶的活性
- 二、非选择题(本大题共3小题,满分40分)
- 31. (每空1分,共10分)下图是某种生物的细胞亚显微结构示意图,试据图回答:

(1) 图中[2] 的主要成分是	,与其形成有关的细胞器是[]
(2) 图中[1] 的主要成分是	
(3) 太阳能通过图中结构[]	中进行的光合作用后,才能进入生物界。
(4) 若该细胞是西瓜的红色果肉细胞,原	则色素主要存在于[]。若
该细胞是洋葱的根尖细胞,则图中不应该	[具有的结构是[]。
(5)如果该细胞是低等植物细胞,则图中:	还应该有的细胞器是
(6) 若该细胞是高等动物细胞,则不该是	具有的结构是[]、
[], []	o
32. (每空 2 分, 共 16 分) 下图为物	质穿过细胞膜的示意图。请据图回答:


• ○ ● ● ○ 分别代表各种物质分子或离子

- (1) 在 a~e 过程中,代表主动运输的是____。
- (2) 葡萄糖进入人体小肠上皮细胞的跨膜运输方式是______, 酒精进

入人体小肠上皮细胞的跨膜运输方式是____。(此题全部填文字)

- (3) 吞噬细胞把失去活性的抗体吞噬进入细胞内的方式属于_____作用。
- (4)可能代表氧气运输过程的是_______;葡萄糖从肠腔进入小肠上皮细胞的过程是。(此题用图中字母表示)
- (5) 生物膜的基本支架是_____(用图中字母表示),生物膜的功能特性是

33. (每空 2 分, 共 14 分) 如图是有氧呼吸过程图解。请据图回答下列问题。

- (1)依次写出图中1、2、3 所代表的物质名称_____、___、___、___。
- (2) 有氧呼吸的主要场所是_____, 进入该场所的呼吸底物是____。
- (3) 如果 0_2 供应不足,则人体内 $C_6H_{12}O_6$ 的分解产物是_____,反应场所是____。